
Comparison of Nonlinear Local Lyapunov Vectors and Bred Vectors in
Estimating the Spatial Distribution of Error Growth

JIE FENG

School of Meteorology, University of Oklahoma, Norman, Oklahoma

JIANPING LI

State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and

Earth System Science, Beijing Normal University, Beijing, and Laboratory for Regional Oceanography and

Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

RUIQIANG DING

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,

Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese

Academy of Sciences, Beijing, China

ZOLTAN TOTH

Global Systems Division, NOAA/OAR/ESRL, Boulder, Colorado

(Manuscript received 5 September 2017, in final form 24 January 2018)

ABSTRACT

Instabilities play a critical role in understanding atmospheric predictability and improving weather fore-

casting. The bred vectors (BVs) are dynamically evolved and flow-dependent nonlinear perturbations, in-

dicating the most unstable modes of the underlying flow. Especially over smaller areas, however, BVs with

different initial seeds may to some extent be constrained to a small subspace, missing potential forecast error

growth along other unstable perturbation directions.

In this paper, the authors study the nonlinear local Lyapunov vectors (NLLVs) that are designed to capture

an orthogonal basis spanning the most unstable perturbation subspace, thus potentially ameliorating the

limitation of BVs. TheNLLVs are theoretically related to the linear Lyapunov vectors (LVs), which also form

an orthogonal basis. Like BVs, NLLVs are generated by dynamically evolving perturbations with a full

nonlinear model. In simulated forecast experiments, a set of mutually orthogonal NLLVs show an advantage

in predicting the structure of forecast error growth when compared to using a set of BVs that are not fully

independent. NLLVs are also found to have a higher local dimension, enabling them to better capture lo-

calized instabilities, leading to increased ensemble spread.

1. Introduction

Because of the chaotic nature of the atmosphere, nu-

merical weather prediction (NWP) will inevitably diverge

from the evolution of the true state of the atmosphere,

limiting predictability (Lorenz 1963a,b; Ruelle and Takens

1971; Li and Chou 1997). Predictability research explores

instabilities of the system that are responsible, along with

model errors for the fast growth of forecast errors. Un-

derstanding the growth of unstable errors is critical to

improvements in NWP. For example, the ingestion of

supplementary observations over carefully chosen dy-

namically unstable regions can reduce analysis and ensuing

forecast uncertainties (Lorenz and Emanuel 1998; Bishop

and Toth 1999; Bishop et al. 2001; Mu 2013), fast-growing

perturbations (perts) can be used to define background

forecast error covariance in data assimilation (DA) algo-

rithms (Trevisan and Uboldi 2004; Uboldi et al. 2005), and

dynamically conditioned growing perturbations are used in

ensemble forecasting to capture analysis–forecast error

development (e.g., Toth and Kalnay 1993, 1997; Molteni

and Palmer 1993; Molteni et al. 1996).Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn

APRIL 2018 FENG ET AL . 1073

DOI: 10.1175/JAS-D-17-0266.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:ljp@bnu.edu.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Various methods have been proposed to characterize

the instabilities of chaotic systems, including the atmo-

sphere. The leading Lyapunov vector (LV) defines the

fastest-growing linear perturbation at a certain time, toward

which any infinitesimal perturbation will converge after

long time evolution (Kalnay 2003). Other fast-growing

perturbation directions can be derived by evolving a set

of perturbations using the tangent linear model of a system

and conducting periodic orthogonalization (Benettin et al.

1980; Wolf et al. 1985; Kalnay 2003). Bred vectors (BVs;

Toth and Kalnay 1993) sample the subspace of fastest-

growing finite-amplitude perturbations. They are captured

by following the periodically rescaled evolution of pertur-

bations between two nonlinear forecasts. As such, BVs can

be considered as the nonlinear extension of the leading LV

(Toth and Kalnay 1997; Kalnay et al. 2002). Perturbation

size can be controlled by the choice of the rescaling period

and amplitude. In complex dynamical systems, BVs are

associated with instabilities characterized by the fastest

perturbation growth in the selected amplitude range (Toth

and Kalnay 1997). For example, at amplitudes in the range

of error variance of today’s NWP initial conditions (i.e.,

analysis fields), BVs strongly project onto baroclinic in-

stabilities (Toth and Kalnay 1997; Corazza et al. 2003; Wei

and Frederiksen 2004), while convective instabilities dom-

inate at much lower perturbation amplitudes (Toth and

Kalnay 1997). TheBVapproach has beenwidely applied in

NWP because of its conceptual simplicity and computa-

tional efficiency.

By definition, singular vectors (SVs) are the linearly

fastest-growing perturbations over a specified time pe-

riod, measured with a specific preselected norm

(Molteni and Palmer 1993; Molteni et al. 1996). Unlike

LVs that represent temporally sustainable behavior,

SVs explore transitional behavior (Szunyogh et al.

1997). Their growth exhibits apparent ‘‘super Lyapu-

nov’’ growth because of fast-decaying, trailing LVs that

at initial time make part of the growing perturbation

structure ‘‘invisible’’ through the chosen norm (Toth

et al. 1999). Hence, growth over the selected period,

only when evaluated via the chosen norm, appears

very large. Despite their more specific definition and

significantly higher computational costs, SVs have been

widely used in predictability studies. Mu et al. (2003)

proposed a nonlinear extension of the SVs, called con-

ditional nonlinear optimal perturbations (CNOPs).

CNOPs have been successfully applied to analyze re-

gions of sensitive error growth (Duan et al. 2004; Mu

et al. 2007; Mu et al. 2009; Zhang et al. 2015). Beyond

these basic and widely used tools, a variety of other

methods has also been proposed to study instabilities

and associated predictability, both from theoretical

and more practical perspectives.

As for BVs, whenmultiple vectors (each startedwith a

different initial seed perturbation) are computed, they

evolve into globally quasi-independent and similarly

fast-growing perturbations (Toth and Kalnay 1997).

This is partly due to stochastic effects arising from

nonlinear perturbation evolution. Previous studies also

found, however, that multiple independently run BV

perturbations regionally collapse into a small subspace

in areas of high growth (Toth and Kalnay 1997). This

may result in an underestimation of the diversity in

plausible forecast error patterns (Wang and Bishop

2003; Bowler 2006), especially in regions with strong

instabilities (Patil et al. 2001, 2003). One may theorize

that the small subspace of the fastest-growing pertur-

bations sampled by the BVs may not capture all po-

tential error patterns in complex dynamical systems.

To mitigate the potential collapse of independently

run BVperturbations into an undesirably small subspace,

various forms of orthogonalization of the perturbations

have been explored. For example, Annan (2004) derived

the fastest-growing perturbation by comparing the

growth rates of orthogonal BVs.1 Keller et al. (2010)

made singular-value decomposition to BVs to obtain the

independent dominated unstable perturbations. Primo

et al. (2008) introduced a new logarithm BV to increase

the diversity of the ensemble. Balci et al. (2012) used the

size of the largest member of BVs as the uniform scaling

of the ensemble. The ensemble transform Kalman filter

(ETKF; Bishop et al. 2001; Wei et al. 2006) or the en-

semble transform with rescaling (ETR; Wei et al. 2008)

transform BVs to quasi-orthogonalized perturbations.

Feng et al. (2014, 2016) proposed a method analogous to

ETR called the nonlinear local Lyapunov vectors

(NLLVs). Although both the ETR and the NLLV

methods ‘‘breed’’ the perturbations to the unstable di-

rections during the forecast phase, they transform

the subspace of perturbations in different ways. The

former increases the diversity of perturbations by

multiplying a transformation matrix to the perturbation

matrix, while the NLLV scheme uses the Gram–Schmidt

reorthonormalization (GSR) to orthogonalize the per-

turbations in cycles, separating independent perturbation

directions with different growth rates.

NLLVs are related to the spectrum of nonlinear local

Lyapunov exponents (NLLEs). Traditional or linear

Lyapunov exponents (LEs) measure the expansion or

1 Note that the differences between the method in Annan (2004)

and the NLLV scheme is that the former orthogonalizes BVs and

compares their growth rates mainly to obtain the fastest-growing

perturbation rather than the overall fastest unstable perturbation

subspace. Meanwhile, the perturbations in the final breeding cycle

are not orthogonalized and thereby are not strictly independent.
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shrinking of infinitesimal perturbations averaged over the

entire phase-space domain of a dynamical system (i.e.,

the LVs; Oseledec 1968). Hence, LEs characterize only

the global and linear behavior of systems. Some sub-

sequent studies expanded the practical applications of

LEs by developing concepts for finite evolution time

(Abarbanel et al. 1991) or finite-size LEs (Aurell et al.

1997). In contrast, NLLEs are introduced to measure the

growth rate of finite-size perturbation along different

perturbation directions at a specific initial state within

finite evolution time (Ding and Li 2007; Li and Ding

2011). The leading NLLE can be used to estimate the

largest LE by taking their temporal mean (i.e., over the

entire attractor) if sufficiently small initial errors are used

(Chen et al. 2006; Ding and Li 2007; Li and Ding 2011,

2015), whereas NLLEs averaged over different initial

perturbations for any specific state offer a way to quantify

local predictability (Ding et al. 2008). Complex dynami-

cal systems are characterized by amplification rates that

vary with perturbation directions (Li and Wang 2008),

yielding a spectrum of NLLEs. The largest NLLE char-

acterizes the exponential growth rate of the leading

NLLV (LNLLV). The other exponents can be calculated

by introducing the subsequent independent NLLVs.

Theoretically, the BVs are an extension of the leading

LV, while the NLLVs are inherited from the leading LV

and other orthogonal LVs in a nonlinear framework.

Previous simple model studies (Feng et al. 2014, 2016)

limited their analysis to the properties of the global

NLLV perturbations, leaving the spatial structure and

other local properties ofNLLVs unexplored. TheNLLVs

are generated through the breeding technique like the

BVs. During the breeding, the stable perturbations will

diminish, while the unstable perturbations will amplify

and become dominated, making the perturbation pat-

terns (i.e., theBVs and theLNLLV)manifest the physical

instabilities in the model (Greybush et al. 2013). The

other NLLVs are similar to the BVs but reveal in-

stabilities on different directions. This paperwill compare

how BVs and their enhanced counterpart, NLLVs, per-

form in numerical experiments in estimating the structure

of forecast error amplification while studying localized

instabilities as the underlying mechanism. Such a study

will provide a foundation for the application of NLLVs in

the identification of the sensitive regions with fast error

growth and the generation of initial ensemble perturba-

tions for capturing case-dependent analysis errors.

The rest of the paper is structured as follows. Section 2

introduces the numerical model and the methods asso-

ciated with BVs and the NLLVs used in this paper. The

flow of the experimental design is described in section 3.

Results and their analysis are found in section 4, while

section 5 offers some conclusions and a discussion.

2. Model and methods

a. Model

The numerical model used in this paper is a

T21L3 quasi-geographic (QG) model (Marshall and

Molteni 1993). This is a global spectral model with

horizontal resolution of T21 (64 3 32) and three

vertical levels corresponding to the 200-, 500-, and

800-hPa pressure levels. The model uses a perpetual

forcing to reproduce the northern winter climatol-

ogy. Although the QG model with 1449 degrees of

freedom (Vannitsem and Nicolis 1997) is relatively

simple compared to NWP models, it is well suited

for this study since it can successfully simulate the

mean large-scale midlatitudes flow, reflecting the

mechanism of baroclinic instabilities important in

forecast error growth (Goodman and Marshall

2002). In other words, the baroclinic instability

could be the main origin of the development of er-

rors and perturbations in this model. The study area

is focused on the mid- and high latitudes of the

Northern Hemisphere (208–858N), and the variable

of interest is the geopotential height (GPH) at

500 hPa.

b. Computation of bred vectors

Each BV is generated through similar, independently

run breeding processes, in each of which the differences

between two nonlinear model integrations are evolved

and rescaled periodically:

1) Consider a series of successive reference states

x2KDt, x2(K21)Dt, . . . , x0, where Dt is the length of

breeding cycle and K is the number of cycles. The

negative indices represent the breeding period.

Superpose a small perturbation d2KDt of size A (in an

L2 norm) on x2KDt and then integrate the perturbed

state x02KDt with the full nonlinear model for Dt interval
to acquire the forecast state f (x02KDt, Dt). When a

breeding cycle is started, d2KDt is chosen to be a

random perturbation.

2) Let d0
2(K21)Dt denote the difference between the

perturbed forecast f (x02KDt, Dt) and the reference

x2(K21)Dt; d
0
2(K21)Dt is then rescaled to the size A

of the initial perturbation, and the updated pertur-

bation is expressed as

d
2(K21)Dt

5 d0
2(K21)DtA=kd0

2(K21)Dtk , (1)

where jj�jj represents the norm of a vector.

3) Superpose the rescaled perturbation d2(K21)Dt on the

subsequent reference x2(K21)Dt and repeat steps 1

and 2 for K cycles to x0 to derive the BVs.
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Through the dynamical evolution, the decaying,

neutral, and slower-growing components in the initial

random perturbations will be gradually eliminated,

leading to the projection of BVs onto the fastest-

growing directions. Multiple BVs can be obtained by

simply selecting different initial random seeds. The

BVs have dominant projections on the leading LVs

and span the small subspace of the fastest-growing

directions.

c. Computation of nonlinear local Lyapunov vectors

The NLLVs are related to the BVs, and computed as

follows:

1) Consider the same series of reference states

x2KDt, x2(K21)Dt , . . . , x0 as in section 2b.

Superpose a group of M different perturbations

d1,2KDt, d2,2KDt, . . . , dM,2KDt with the same size A

on the basic state x2K�Dt and integrate the indi-

vidual perturbed states x01,2KDt, x
0
2,2KDt, . . . , x

0
M,2KDt

with the full nonlinear model for Dt interval to
acquire their respective forecast states f (x01,2KDt, Dt),
f (x02,2KDt, Dt),. . . , f (x

0
M,2KDt, Dt). Again, in the first

cycle of the NLLV algorithm, nonidentical initial

perturbations are chosen arbitrarily.

2) The differences between the perturbed forecasts and

the references at the same valid time2(K2 1)Dt are
denoted by d0

1,2(K21)Dt, d0
2,2(K21)Dt, . . . , d

0
M,2(K21)Dt.

Without changing the direction of the first perturba-

tion d0
1,2(K21)Dt, we orthogonalize the other pertur-

bations successively using the GSR algorithm2 (Wolf

et al. 1985; Li andWang 2008) and then rescale all of

them to size A as in Eq. (1) to derive the following

perturbations: d1,2(K21)Dt, d2,2(K21)Dt, . . . , dM,2(K21)Dt.

3) Superpose the new perturbations on the reference

state and repeat steps 1 and 2 in a cyclical fashion to

obtain the NLLVs.

The difference between BVs and NLLVs is that while

the former vectors are evolved independently, NLLVs

are periodically orthogonalized through the GSR

method. Specifically, BVs are random samples of

the fastest-growing perturbation, leading to uncertain

performance in spanning the subspace of unstable

perturbations. In comparison, the orthogonalization en-

ables NLLVs to selectively capture multiple independent

fast-growing perturbations and span the unstable sub-

space with fewer sampling fluctuations. Therefore, NLLVs

give a more systematic description of the subspace of

the fast-growing perturbation directions than BVs.

3. Experimental configuration

It has been demonstrated that the BVs rescaled to

amplitudes corresponding to midlatitude analysis-error

variance are dominated by baroclinic instabilities,

which mainly determine the short-term error

growth of synoptic-scale forecasts (Toth and Kalnay

1997). Since the NLLVs are generated using the

same rescaling factor and length of evolution cycle

as the BVs, the LNLLV has exactly the same prop-

erties as the BVs. Whether the additional, lower-

rank NLLVs are also associated with the dynamical

instabilities and how they describe such instabilities

compared to the BVs are the main issues to be an-

alyzed and clarified in this paper.

The schematic of the experimental setup was shown in

Fig. 1. Simulating a realistic situation, a long series of

successive analysis states generated with a 12-h-cycle

ensemble Kalman filter (EnKF) scheme are used as a

representation of the basic flow for the computation of

BV and NLLV perturbations (see Fig. 1b) and also as

reference states that the forecasts are compared with

(see Fig. 1a). Each analysis state is the average of 200

EnKF analysis ensemble. The details of the EnKF pro-

cedures are described in appendix A. The practical error

growth of EnKF ensemble forecasts against analyses will

be used to verify the accuracy of BV and NLLV per-

turbations in capturing the flow instabilities. As a

benchmark, the growth of random errors will also be

used in one set of experiments as an alternative to the

more realistic ENKF-produced analysis errors. The

gridpoint initial random errors are drawn from a

Gaussian distribution with a zero mean and a standard

deviation (SD) equal to 5% of the climatological SD of

the QG model, which are then globally rescaled to the

same size (7.5, 5, and 3.75m in an L2 norm at 200, 500,

and 800 hPa, respectively) as the BV and NLLV

perturbations.

The same number (10) of NLLVs and BVs are gen-

erated for a contiguous period as described in section 2,

with a 12-h rescaling cycle and global rescaling ampli-

tudes of 7.5, 5, and 3.75m (in an L2 norm) at 200, 500,

and 800 hPa, respectively, corresponding to about 5%

of the global-mean climatic variability at each level.

The value of 5% was selected because BVs rescaled

with 1%–10% of the natural variability are found

2 The reordering of perturbations according to their growth rates

before the application of GSR in Feng et al. (2014) made no sig-

nificant changes in the performance of the MAP–SDEG correla-

tion compared to the direct GSR to the perturbations without re-

ordering and therefore was not applied here. It could be the much

flatter Lyapunov spectrum (Vannitsem and Nicolis 1997) of the

growing subspace in the QG model relative to the three-variable

Lorenz model used by Feng et al. (2014) that weakens the effect of

the reordering on capturing the unstable subspace.
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closely associated with extratropical baroclinic in-

stability (Toth andKalnay 1997). To diminish the effect

of the initial random components in BVs and NLLVs,

the first 50 days of cycling were discarded, after which

we study 90 consecutive cases at a 1-day interval

(one season).

We will use the correlation between two metrics, that

is, the mean absolute perturbation (MAP) and the spa-

tial distribution of error growth (SDEG), to evaluate the

relative performance of BVs and NLLVs. Previous

studies have found the BV perturbations and the fore-

cast errors have some similar structures, especially in

some local regions with fast error growth, although they

may have different signs (Toth and Kalnay 1997;

Corazza et al. 2003; Newman et al. 2004; Yang et al.

2009). MAP and SDEG are defined as somewhat mod-

ified forms of the generally used dynamical perturba-

tions and forecast errors, respectively. Since our aim

here is to quantify the correlation relationship between

the fields of perturbations and error growth, the absolute

perturbations instead of the original ones are used (i.e.,

the MAP) to estimate the instabilities. As a reference

for evaluating the instabilities, the error growth (i.e., the

SDEG) instead of the forecast error is used since the

former is more directly related to instabilities and was

found to have higher spatial correlation with MAP of

both BVs andNLLVs than the forecast error amplitudes

in our study (not shown). The MAP of BVs and NLLVs

at valid time t denoted by ut are calculated by

u
t
5 (p

t,1
1p

t,2
1⋯1 p

t,M
)/M, (2)

where pt,i 5 abs(dt,i) (i 5 1, 2, . . . , M), and dt,i is the ith

BVorNLLV in order at time t (red solid lines in Fig. 1b),

and abs(�) means all gridpoint perturbations converted

to absolute values. Generally, one randomly selected

BV is already sufficient to indicate the instabilities be-

cause of their similarities (Corazza et al. 2003), though

the use of a larger sample may reduce sampling fluctu-

ations. Here, the same number of BVs as the NLLVs is

used for a fair comparison.

The SDEG at valid time t denoted by dt is simply

measured as the increment of absolute errors in 1 day,

namely

d
t
5 abs(e

t
)2 abs(e

t22Dt
) , (3)

where et and et22Dt are both forecast error fields valid

at time t and 1 day before t, respectively. Specifically,

et 5 Ft 2 A, et22Dt 5 Ft22Dt 2 A, where Ft and Ft22Dt

are the forecasts with lead times t and t 2 2Dt (Dt 5
12 h) from the same initial state and A is the corre-

sponding analysis field. In the experiment with EnKF-

produced analysis errors, the forecasts are initiated from

the EnKF analysis members, and SDEG is computed for

the first day (t 5 24h), while in the experiment with

random initial errors, forecasts are started from ran-

domly perturbed conditions, and SDEG is calculated

from 2 to 3 days (t 5 72h) after an initial spinup. The

FIG. 1. Schematics of (a) the computation of forecast errors and (b) the generation of BVs and NLLVs.
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SDEG investigated in the above two scenarios are

within the approximately linear error growth stage. To

reduce sampling noise, for each case, SDEG is com-

puted by averaging the error growth in 200 different

ensemble forecasts initiated at the same time. We will

use the pattern correlation between MAP and SDEG at

the same valid time t as an indicator of howwell a type of

perturbation (BVs or NLLVs in our case) captures the

instability of flow and the behavior of errors.

4. Results

a. Growth of random perturbations

In the first experiment, forecasts are initialized with

arbitrarily generated initial errors superposed on EnKF

analysis to assess the efficiency of BV and NLLV per-

turbations to describe forecast error growth. To reduce

the effect of noise in the random initial errors, SDEG is

computed between day-3 and day-2 forecasts instead of

day-1 and day-0 conditions (but valid at the same time

for which the BVs and NLLVs are generated).

Figure 2 shows the SDEG (Fig. 2a) and the MAPs

captured by five randomly selected BVs (Fig. 2b) and the

first five NLLVs in a randomly selected case (case 1;

Fig. 2c). As seen from Fig. 2a, SDEG of 500-hPa GPH

exhibits large-scale zonally oriented patterns possibly

associated with the eddy activity concentrated in storm-

track regions (Buizza and Palmer 1995; Vannitsem and

Nicolis 1998), which suggests that the baroclinic in-

stabilities could be the source of the major forecast un-

certainties. The MAPs in Figs. 2b and 2c also appear to

followwavelike patterns.Many areas of strong instability,

indicated by local BV MAP maxima, correspond with

areas of fast forecast error growth; see as examples the

highlighted areas over 1) the Caspian Sea, 2) the mid-

latitude central Pacific Ocean, and 3) southern Green-

land. It is noteworthy that theNLLVMAP is also capable

of catching these unstable regions as shown in Fig. 2c.

Moreover, the NLLV MAP better specifies the relative

strength of the forecast error growth over these three

regions (region 2 . region 3 . region 1). Although the

BVMAP exhibits the strength of some local error growth

more accurately than the NLLVs, like East Asia, the

latter (0.54) has an overall higher pattern correlation with

the error growth structure than the former (0.37). The

results indicate that in addition to the LNLLV, the other

leading NLLVs may also be related to the dynamical

instabilities. Furthermore, a set of the leading NLLVs

appear to capturemore robustly the dynamics underlying

forecast error growth than a similarly sized set of BVs.

To obtain statistically reliable results, for this case, we

repeated the generation of BVs and NLLVs 100 times,

using different initial random seeds. Figure 3 shows their

comparison of the SDEG–MAP correlation in each

sample. In 92 samples, the NLLV scheme has higher

correlation than the BV scheme. The NLLVs have

higher sample-mean correlation (0.52) and lower SD

(0.034) than those of the BVs (0.44 and 0.039) and the

difference between their mean values is statistically

significant (P , 0.01), which demonstrate the more

stable performance of the NLLVMAPs in revealing the

SDEG compared to the BVs.

Figure 4a compares the pattern correlation between

the SDEG and the MAPs of the BV (black) and NLLV

(red) schemes averaged over all 90 cases as a function

of the number of perturbations used. When only one

FIG. 2. (a) The SDEG of random initial errors within 1 day and the MAPs generated by combining five (b) BVs and (c) NLLVs at the

same valid time in one randomly selected case. The spatial correlations between (a) and (b) and between (a) and (c) are 0.37 and 0.54,

respectively.
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perturbation is used, since the leading NLLV and any

BV, by definition, are generated the same way, the re-

sults are virtually identical. With an increase in the

number of perturbations used, both the BVs andNLLVs

display a better performance in terms of explaining the

spatial distribution of error growth and exceed the 0.01

significance level,3 though beyond five perturbations,

their performance levels off. However, NLLVs out-

perform BVs, and ever more so with larger number of

perturbations. Figure 4b presents the percentage of ca-

ses in which the NLLVs gained a higher SDEG–MAP

correlation than the BVs as a function of number of used

perturbations. Except for the same performance with a

single perturbation, in the majority of cases, NLLVs

perform better, in even more than 80% cases from

numbers 6 to 10. These results indicate that the in-

dependent information in a set of NLLVs carry useful

information regarding error evolution beyond what the

BVs provide.

b. Growth of EnKF ensemble perturbations

In reality, analysis errors are not random since NWP

initial states optimally combine short-range model

forecasts with observations. Correspondingly, in a more

realistic context, we used EnKF initial ensemble per-

turbations, usually regarded as reliable estimates of

analysis uncertainty, as a proxy for analysis errors when

initializing NWP forecasts (i.e., the analysis considered

as the ‘‘truth’’). For each of the 90 cases studied above,

SDEG is calculated by averaging the amplification of all

200 EnKF ensemble perturbations.

Figure 5 shows the SDEG (Fig. 5a) and its corre-

sponding BV (Fig. 5b) and NLLVMAPs (Fig. 5c) for the

same case as Fig. 2. The areas with positive error growth in

Fig. 5a are overall larger than in Fig. 2a because the latter

has more transitional behavior of initial errors due to

more random noises in analysis errors (Trevisan and

Legnani 1995). Similar to the results in Fig. 2, the regions

with fast error growth are related to the localized unstable

perturbations in both the BV and NLLV modes, and

again, the order of the forecast error growth over the re-

gions 1–3 is better simulated by the NLLVs than the BVs.

Correspondingly, the NLLV mode (0.52) has higher cor-

relation with the SDEG than with the BV mode (0.27).

The mean SDEG–MAP correlation for all 90 cases

as a function of number of perturbations is shown in

Fig. 6a. As in Fig. 4a, the correlation increases with the

number of perturbations. While the correlation for BVs

appear to saturate at a value around 0.4 correlation, the

correlation for NLLVs are higher (up to 0.5). We also

compared the EnKF analysis ensemble perturbations

(differences between the EnKF initial ensemble and

their average) with the BVs and NLLVs at the same

valid time in terms of estimating SDEG (blue line in

Fig. 6a). The correlations between the EnKF analysis

ensemble perturbations and SDEG increase with the

number of used perturbations but perform overall worse

than the BVs and NLLVs. In the DA cycle, the EnKF

analysis ensemble perturbations are generated by

transforming the EnKF background forecast perturba-

tions, which, like the BVs and NLLVs, point to the di-

rections of instabilities during the forecast phase.

However, the ingestion of observations in the DA step,

although it improves the accuracy of EnKF initial per-

turbations in representing the uncertainties in analyses,

introduces random noises (or stable components) to the

initial perturbations (Toth and Kalnay 1997; Hamill

et al. 2002; Peña et al. 2010). The performance of EnKF

analysis perturbations in manifesting the instabilities is

thus degraded. Figure 6b compares the SDEG–MAP

correlation score for the BV and the NLLV methods

with different number of perturbations averaged over

FIG. 3. The spatial correlation between the SDEG of random

initial errors and the MAPs derived from five BVs and NLLVs in

the same case as Fig. 1 but repeated for 100 times with BVs and

NLLVs generated from different initial random seeds. The mean

correlations and the SD of the 100 samples are 0.44 and 0.039 for

the BV scheme and are 0.52 and 0.034 for the NLLV scheme. It has

92 (92%) cases where the NLLVs have higher correlation than

the BVs.

3 The score of the 0.01 significance level (close to 0.3) is lower

than the generally used value of 0.6 in operational forecasts, be-

cause the model effective spatial degree of freedom and the veri-

fied variables (the former is 500-hPa GPH, while the latter is its

forecast error growth) are different.
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the 90 cases. With EnKF initial errors, NLLVs perform

even better, outperforming BVs in close to 90% of the

cases with eight or more perturbations (cf. Figs. 6b and

4b with random initial errors).

The difference between NLLV and BV correlation

values with SDEG for M 5 5 perturbations for the 90

individual cases is shown in Fig. 7 (black line). In-

terestingly, the case-to-case variability in the compara-

tive performance of MAPs in predicting changes in

forecast error (SDEG) is closely correlated (r 5 0.83,

significant at the 0.01 level) with the difference in the

variance explained in error amplification (SDEG) by the

two types of MAPs (red curve in Fig. 7). The latter

quantity is defined similarly to the perturbation versus

error correlation analysis (PECA) proposed byWei and

Toth (2003). Specifically, if P0 5 (p0
1, p

0
2, . . . , p

0
M) are

the standardized perturbations (with L2 norm 1) of

p1, p2, . . . , pM, whereM5 5, the projection of the SDEG

d on the subspace of perturbations p1, p2, . . . , pM can be

derived by q 5 P0P0Td, where the superscript T repre-

sents the transpose of a matrix. The variance of d pro-

jected onto the ensemble perturbations (i.e., explained

variance) is then calculated by the square of the corre-

lation between d and q. It is also notable that while BVs

outperform NLLVs in 18 out of the 90 cases in terms of

the correlation metrics, they do so only in 14 cases

when compared in terms of explained error variance.

These results once again demonstrate the advantage of

FIG. 5. As in Fig. 2, but theEnKF ensemble perturbations are used as initial errors to estimate the SDEG. The spatial correlations between

(a) and (b) and between (a) and (c) are 0.27 and 0.52, respectively.

FIG. 4. (a) The spatial correlation between SDEG of random initial errors and MAPs

derived from 1 to 10 BVs (black solid line) and NLLVs (red solid line) averaged over all 90

cases as a function of the number of perturbations used. The black and red dashed lines

represent their respective 0.01 significance levels for the correlation. (b) The percentage of

cases in which the NLLV scheme has higher SDEG–MAP correlation than the BV scheme as

a function of the number of perturbations used.
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NLLVs over the BVMAPs in imitating the SDEG now

in a more realistic experimental environment, with

EnKF initial errors.

c. Independence of NLLV and BV perturbations

The higher variance of SDEG that NLLVs can ex-

plain as compared to BVs may be related to the larger

subspace of growing perturbations spanned by the

NLLVs because of their orthogonality at the initial time.

Other things being equal, more uncorrelated and in-

dependent growing perturbations are more likely to

capture the comprehensive properties of instabilities

manifested in SDEG. Here, the explained variance of

the eigenvectors of the covariance matrix of ensemble

perturbations is used to evaluate the dependence in a set

of perturbations. Specifically, for ensemble perturba-

tions D5 (d1, d2, . . . , dM), the covariance matrix can be

written as R 5 DDT. We use an empirical orthogonal

function analysis to solve for eigenvalues l1, l2, . . . , lM

of R to calculate the explained variances ri as

ri 5 li/
�
�M

i51li

�
.

As seen from Fig. 8, the first five NLLVs exhibit a

closer to uniform distribution4 of explained variance as

compared to five randomly chosen BVs5 averaged over

all 90 cases. In other words, NLLVs span the local phase

space of growing directions with more diverse pertur-

bations than do the BVs. This larger diversity makes

NLLV MAP a better predictor of changes in analysis-

error magnitude that is dynamically driven by multiple

growing instabilities compared to the more correlated

BVs, as revealed in sections 5a and 5b.

d. Local dimension of BVs and NLLVs

Patil et al. (2001, 2003) proposed an algorithm for the

calculation of the local dimension to assess the de-

pendence of perturbations over local regions.Moreover,

they found that the local dimensions of BVs are related

to the dynamical instabilities of error development.

Specifically, over the regions with stronger instability,

the perturbations exhibit more consistent tendency to

concentrate and thus have more converged directions

and lower local dimensions. The impact of the global

orthogonalization of NLLVs on the characteristics of

local perturbations can be investigated by compar-

ing the local dimensions to those of BVs. Using

Patil et al.’s (2001) algorithm (see more details in

FIG. 6. As in Fig. 4, but the EnKF analysis ensemble perturbations are used as initial errors

to estimate the SDEG. The performance of MAP derived from EnKF analysis ensemble

perturbations is also shown (blue line in Fig. 6a).

FIG. 7. The differences (black) between the SDEG–MAP cor-

relations of the BV and NLLV schemes and the differences (red)

between the percentages of the projected variances of SDEG on

the subspace of the BV and NLLV absolute perturbations. Their

correlation over all 90 cases is 0.83, which is significant at 0.01 level.

4 Note that since they are globally orthogonalized, over the

Northern Hemisphere, the NLLV perturbations do not present a

totally uniform distribution of explained variances.
5 The original BV and NLLV perturbations with signs are used

here instead of the absolute perturbations since the latter are in

comparison more correlated overall; however, they have a similar

relative performance of the dependence.
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appendix B), here, we compare the dimension of five

local BV and NLLV perturbations in 5 3 5 grid boxes

centered at each grid point at 500hPa.

Figure 9 shows a comparison of the distribution of the

local dimensions of five BVs and NLLVs in case 1 (the

same case as in Figs. 2 and 5). As seen in Fig. 9a, the local

dimensionality of BVs and NLLVs are spatially weakly

correlated at the 0.47 level. This is a typical example as

the mean of the correlations taken over all 90 cases is

0.45. At the majority of grid points, however, the local

NLLV dimension is higher than the local BV dimension

(see Fig. 9b). This is true for the other cases as well. As

seen in Fig. 10, the number of cases with higher NLLV

than BV dimension exceeds 90% over three-fourths of

the domain considered. The higher NLLV dimension is

due to the global orthogonalization of the NLLVs and is

an indication of more independent perturbations in

the NLLVs.

Applying a method similar to that used by Toth and

Kalnay (1997; see their Fig. 4 and Table 1), we investigate

the difference between how individual BVs and NLLVs

reflect regional instabilities. In particular, Table 1 tabu-

lates the presence or lack of a local maximum or mini-

mum in five BVs and NLLVs (Fig. 11) over selected

regions of fast error growth (see areas A, B, C, and D).

The results in Fig. 11 and Table 1 confirm Toth and

Kalnay’s (1997) finding that in areas of fast perturbation/

error growth, independently cycled BVs reproduce the

nonlinearly fastest-growing perturbations and that these

regional patterns are combined with arbitrary signs in

individual global BVs. BVs naturally combine pertur-

bations from regions with the strongest (i.e., fastest-

growing perturbations) and less-strong instabilities,

offering a sampling of the fastest-growing perturbation

from each unstable region, with random signs. Of the 20

cases (4 selected regions times 5 BVs), only in 2 cases did

the BVs have no pronounced local perturbation. This is

in contrast with 11 such cases for the NLLVs. The or-

thogonalization of NLLVs separates perturbations ac-

cording to their growth rates. Given the strength of

instabilities supporting regional perturbation growth

varies from region to region, the NLLV procedure also

has a geographically selective effect on the vectors: in

case 1 studied here, the first two NLLVs, for example,

tend to peak in areas C and D, while the lower-ranked

perturbations frequent areas A and B. In this respect,

NLLVs like linear LLVs and SVs that, because of the

simpler linear dynamics, are even more clearly sepa-

rated geographically (Buizza and Palmer 1995). These

results suggest that to simulate the uncertainties of local

analysis errors, individual NLLVs, like SVs (Molteni

et al. 1996), should not be used directly as ensemble

perturbations but rather in a linear combination with

other NLLVs. Additionally, the growing components in

analysis errors may be randomly located in the unstable

subspace spanned by NLLVs and thus should be better

sampled by the linear combination of NLLVs.

5. Discussion and conclusions

The abilities of bred vectors (BVs) and nonlinear local

Lyapunov vectors (NLLVs) to predict forecast error

growth is compared. Both BVs and NLLVs are gener-

ated by cycling nonlinear perturbations along a real or

proxy trajectory of a system, the difference being that

the NLLV procedure involves the periodic application

of a Gram–Schmidt orthogonalization step. With such a

step, the spectrum of leading NLLVs contains the

fastest-growing nonlinear perturbation at a given per-

turbation amplitude and a set of subsequent perturba-

tions with the fastest growth orthogonal to previous

elements.When the performance of the first fewNLLVs

and a similarly sized set of randomly chosen BVs are

compared, we find that NLLVs can better predict the

spatial structure of forecast error growth.

The result is closely related to the interdependence

between BV or NLLV perturbations. Generally, the

growing components of analysis errors are randomly

located within the subspace spanned by various most

unstable perturbations (Buizza et al. 2005), which may

be more comprehensively and specifically simulated by

independent NLLVs than the same number of BVs.

It is well known that localized structures in BVs with

amplitudes characteristic of error variance in today’s

analyses correspond to dynamical instabilities. In this

paper, NLLVs successive to the leading NLLV (or BV)

were found to exhibit similar properties. As expected,

the local dimension of a set of NLLVs exceeds that of a

similarly sized set of BVs, while spatial variations in the

two local dimension fields are correlated.

FIG. 8. The explained variances of the eigenvectors of the co-

variance matrix of five BV and NLLV perturbations over the

Northern Hemisphere averaged over all 90 cases.
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The wide-ranging application of BVs in the genera-

tion of initial ensemble perturbations is due to their

conceptual simplicity, low computational cost, and

foremost, their ability to sample the growing modes to-

ward which any perturbation, including the analysis er-

rors, will develop. BVs, however, are not orthogonalized

and, therefore, as shown in this study, span a smaller

subspace than a similarly sized set of NLLVs, both

globally and regionally. This may explain why NLLVs in

our experiments outperform BVs in explaining the de-

velopment of forecast errors. NLLVs, or ensemble

transform (ET) perturbations as Wei et al. (2008) call

them, were also found to improve forecast skill, pre-

sumably because of their more efficient sampling of

analysis errors. In potential application to ensemble

forecasting, the NLLVs, instead of the global rescaling,

can be locally rescaled with an estimated gridded field of

analysis-error variance to better represent the un-

certainties of analysis errors in local regions. Addition-

ally, the local perturbations of NLLVs are in good

agreement with instabilities and thus could be used to

identify the regions with potential fast error growth and

how errors propagate, which are critical steps before

deploying targeted observations. Further studies of the

properties and performance of NLLVs with complex

NWP models may provide additional insight into at-

mospheric instabilities and the optimal use of NLLVs in

various applications.

FIG. 10. Percentage of the cases with a higher local dimension for

the first five NLLV perturbations than that for the same number of

BV perturbations at each grid point.

FIG. 9. (a) The distribution of the local dimensions of five BV (shaded) andNLLV (contour) perturbations in the same case

as in Figs. 2 and 5. Their spatial correlation is close to 0.47. (b) The difference of the NLLV from the BV local dimension.

TABLE 1. Presence (11 for maximum;21 for minimum) or lack

(0) of local extremum over domains A–D for the five BV and

NLLV perturbations in Fig. 11.

Pert 1 Pert 2 Pert 3 Pert 4 Pert 5 Count

A BV 21 11 0 21 21 4

NLLV 0 0 0 1 0 1

B BV 11 21 21 11 11 5

NLLV 0 0 1 1 1 3

C BV 11 21 11 11 11 5

NLLV 1 0 0 0 1 2

D BV 21 11 21 11 0 4

NLLV 1 1 0 0 1 3
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APPENDIX A

The Ensemble Kalman Filter

We integrate the QG model for an extended time

period to obtain a long series of true states xt. Simulated

observations y are generated by superposing random

perturbations e on truth:

y5Hxt 1 e; (A1)

where H is an operator that projects the states from the

model space to the observation space and e is the ob-

servation errors of GPH (m). Following Houtekamer

and Mitchell (1998), e are obtained from the covariance

matrix:

R5 (e
200

; e
500

; e
800

)T(e
200

; e
500

; e
800

)5

0
@ 260 80 20

80 80 20

20 20 30

1
A ,

(A2)

where T represents the transpose of a matrix. The ob-

servations are available every 12h and exactly at the

same valid time as the 12-h background forecast. If the

ensemble matrix is defined as

Xf 5 (xf1, x
f
2, . . . , x

f
N), (A3)

where the ensemble background forecasts are denoted

by xfi , with N 5 200, then the ensemble perturbation

matrix can be expressed as

X0f 5 (xf1 2 xf , xf2 2 xf , . . . , xfN 2 xf), (A4)

where xfdenotes the arithmetic mean of the ensemble.

The background covariance matrix of the ensemble Xf

can be calculated as

Pf 5
1

N2 1
X0fX0fT . (A5)

The set of yi (i 5 1, 2, . . . , N) represent a group of

perturbed observations that corresponds to each pre-

vious ensemble forecast xfi . They are defined as

y
i
5 y1 e

i
. (A6)

The random perturbations ei follow the same co-

variance matrix as e. The analysis state is updated by

combining the observation yi with xfi:

xai 5 xfi 1K(y
i
2Hxfi ) . (A7)

The Kalman gain K is calculated by

FIG. 11. The spatial patterns of five (a) BV and (b) NLLV perturbations over the Northern Hemisphere (208–858N) for case 1 studied in

Figs. 2, 5, and 9.
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K5PfHT(HPfHT 1R)21 . (A8)

Note thatK is actually a weighting measuring the ratio

of the forecast and observational error covariance,

which determines to what extent the background fore-

casts will be corrected to fit observations.

To avoid filter divergence due to undersampling and

other issues, an inflation factor of 1.3 is applied to X0f. No
covariance localization is used here since the 200 ensemble

members filter out the bulk of spurious long-distance cor-

relations that would be present with a smaller ensemble.

Themean xa of the analysis ensemble xai (i5 1, 2, . . . ,N) is

considered as the analyzed state used to initialize forecasts.

APPENDIX B

Local Dimension of Perturbations

The algorithm of the local dimension follows Patil

et al. (2001). For a model field with uniformly distrib-

uted grid points, we consider a roughly square region of

L 3 L with a gridpoint G in the center, where L is the

number of grid points (L 5 5 in our case). The L 3 L

grid points of ensemble perturbation di (i5 1, 2, . . . ,M)

at one level form a local vector denoted by ci; M local

column vectors then construct an M 3 N matrix (N 5
L 3 L), C 5 (c1, c2, . . . , cM). The M 3 M covariance

matrix of C is Q 5 CTC, where CT is the transpose

of C. By using the empirical orthogonal function

analysis to matrix Q, the singular values (square root

of eigenvalues) can be computed and ordered by

s1 $s2 $ . . . $sM. Then the local dimension over the

region centered at gridpoint G can be derived by de-

fining the following statistic on the singular values:

c(s
1
,s

2
, . . . ,s

M
)5

 
�
M

i51

s
i

!2

�
M

i51

s2
i

. (B1)

The local dimensions for other regions can be similarly

calculated.
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